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Abstract. Fermat found his little theorem by examining Mersenne
prime. This thesis discloses the numerical structure of Fermat’s observation on

Mersenne prime and submits its expanded theorems, which differ from his little
theorem. The structure is deduced from the more essential theorems which
describe the relation between the index and the modulus of power residue

being one.

1. Introduction

One ultimate instance often indicates multiple structures of mathmatics. Fermat

found his little theorem by examining Mersenne prime [1: 26-27]. In this case, Fermat

expanded the law as its base from 2 to the general numbers, and it led Euler’s theorem.

This thesis discloses the numerical structure of Fermat’s observation on Mersenne prime

and submits its other expanded theorems, which differ from his little theorem. The

structure is deduced from the theme of this thesis, the more essential theorems, which

describe the relation between the index and the modulus of power residue being one.

This thesis is consideration of the case of power residue being one, especially about

the relation between its index and its modulus. On the section 2, an equality is displayed,

which is the relation between a divisor of its index and a divisor of its modulus linked

by the order of its base modulo the divisor of its modulus. Theorem2.2 claims about

it. Additionally, Theorem2.3 suggests the method to exclude the obvious divisors of its

index, especially one, and gives Theorem2.2 the fundamental significance. From Remark

2.5, the divisors structure in the relation between the index and the modulus is examined

in more detail. At Example2.13 one method of primality test or prime factorization using

the examined structure is showed, and the section 2 finishes.

In the discussion on the section 2, the usage of Theorem2.2 is not cleary referred to.

But on the section 3, with discussing about the limited cases, it will be clear that the

relation is the key ponint of the structure of a certain type of natural numbers, such

as Mersenne number 2p − 1. Theorem3.2 confines a divisor of its modulus to a prime

factor of its modulus, and finds the more simple relation with a divisor of its index than

in Theorem2.2. Theorem3.3 confines its index to repeated multiplication of a prime

number, and finds the general structure of Mersenne number 2p − 1, in other words

Fermat’s little theorem of the case of its base 2. Additionally, using the contrapositive
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of Theorem3.3, Theorem3.4 shows the numerical structure including the existence of

Fermat’s little theorem. Moreover, Theorem3.8 expands Theorem3.3 to more general

numbers ax, in other words, the general case of power residue being one.

On the section 4, Theorem4.2 gives the general and concrete instance of Theorem

3.3, including the instance previously pointed as Mersenne’s and Fermat’s one. The

succeeding examples illustrate these theorems and considerations.
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2. The fundamental theorems and their numerical structure

The proof of the next Lemma starts this consideration.

Lemma 2.1. When a, n ≥ 2, x ≥ 1 are natural numbers and

ax ≡ 1 (mod n) (1)

is established, then a and n are coprime.

Proof. If a and n are not coprime, a and n have a common prime factor q ≥ 2.

Now because of (1), with k ≥ 1,

ax = kn+ 1

can be described.

Therefore,

ax − kn = 1

however, the left side of this equality can be divided by q, and the right side of this

equality can not be divided by q.

Therefore, a and n are coprime. □

The next theorem is the most central proposition of this thesis. It shows the equality

which is the relation between a divisor γx of the index x and a divisor γn of the modulus

n linked by the order c of the base a modulo γn.

Theorem 2.2. When a, n ≥ 2, x ≥ 1 are natural numbers and

ax ≡ 1 (mod n) (1)

holds,

if there exists a divisor γn ≥ 2 of n, which satisfies

af(γn) ≡ 1 (mod γn), (2)

then there exists a divisor γx ≥ 1 of x and

f(γn) = kγx (provided k ≥ 1)

is established.

Proof. Because of (1), for l ≥ 1,

ax = ln + 1

can be described.
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γn ≥ 2 is a divisor of n, therefore n
γn

is a natural number, and

ax = (l · n
γn

) · γn + 1 .

Consequently,

ax ≡ 1 (mod γn) (3)

is established.

Because of Lemma2.1, a and γn are coprime, hence there exists a minimum c ≥ 1 which

satisfies

ac ≡ 1 (mod γn). (4)

Incidentally, c is the order or the cycle of a modulo γn.

Because of (3), (4) and its minimality, c is a divisor of x.

As well as it, because of (2), (4) and its minimality, c is a divisor of f(γn).

Consequently,

f(γn) = kc (provided k ≥ 1)

is established.

It is solved by taking c as γx. □

In the previous theorem, all x have the divisor 1, and when γx takes 1, f(γn) can

take all natural numbers. Therefore the equality seems to give nothing, in other words,

no limitation on either γn or γx.

However the next theorem suggests the effective method to exclude the obvious divi-

sors from the existence domain of γx, especially 1, and gives Theorem2.2 the fundamental

significance, in other words, giving the concrete limitation between γn and γx. Please

note that it does not mean the excluded domain has no γx, but it is just not clear γx
exists in the excluded domain or does not exist in the excluded domain.

Theorem 2.3. In Theorem2.2, if

n does not take any divisor more than or equal to 2 in less than aγ , (1)

then

γx > γ

is established.

Proof. Because of (1), for any γn ≥ 2,

γn ≥ aγ
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is established.

Therefore, for any γ ≥ γ
′ ≥ 1,

aγ
′

̸≡ 1 (mod γn)

is established.

γ
′
does not satisfy (4) of Theorem2.2, hence γ

′
can not be the order c in the proof of

Theorem2.2. Therefore,

c > γ

Consequently, there exists a divisor γx which satisfies

γx > γ

and

f(γn) = kγx (provided k ≥ 1).

□

Corollary 2.4. In Theorem2.3, if

n does not take any prime factor more than or equal to 2 in less than aγ , (1)

then,

γx > γ

is established.

Proof. n taking a divisor more than or equal to 2 in less than aγ is equivalent to n

taking a prime factor more than or equal to 2 in less than aγ . □

Remark 2.5. The important point of Theorem2.3 is that to prove

γx ̸= γ

need only giving

aγ ̸≡ 1 (mod γn).

The next considerations are come from this remark.

Lemma 2.6. When γx is a divisor of x and γ
′

x is a divisor of γx,
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if

aγ
′
x ≡ 1 (mod γn), (1)

is established, then

aγx ≡ 1 (mod γn)

is established.

Proof. Because of (1),

aγ
′
x − 1 ≡ 0 (mod γn)

and

aγx − 1 = (aγ
′
x − 1)(1 + aγ

′
x + aγ

′
x·2 + · · ·+ a

γ
′
x·(

γx

γ
′
x

−1)
).

Therefore,

aγx ≡ 1 (mod γn)

is established. □

Lemma 2.7. When γx is a divisor of x and γn is the maximum divisor of n which

satisfies

aγx ≡ 1 (mod γn), (1)

then for any divisor γ
′

x of γx, and for any divisor γ
′

n of n, which is not a divisor of γn,

aγ
′
x ̸≡ 1 (mod γ

′

n)

is established.

Proof. If

aγ
′
x ≡ 1 (mod γ

′

n)

holds, because of Lemma2.6,

aγx ≡ 1 (mod γ
′

n)

holds.

γ
′

n is not a divisor of γn, hence there exists a prime factor p of γ
′

n of which the maximum

index included in γ
′

n is more than the maximum index included in γn.

In other words, the maximum index r
′
of p included in γ

′

n and the maximum index r of
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p included in γn satisfy

r
′
> r (provided r

′
, r ≥ 0) .

Therefore,

aγx ≡ 1 (mod γn · p),

however γn is the maximum divisor satisfying (1). This is contradiction. □

Remark 2.8. When

aγx ≡ 1 (mod γn) and aγ
′
x ≡ 1 (mod γn)

hold,

agcd(γx,γ
′
x) ≡ 1 (mod γn)

is established.

This proposition is not used in this thesis. However it seems important to understand

the structure of the relation between the index x and the modulus n, therefore picked up

here. The simple proof is added below.

Proof. Describing g = gcd(γx, γ
′

x), and

aγx − 1 = (ag − 1)(1 + ag + ag·2 + · · ·+ ag·(
γx
g −1))

aγ
′
x − 1 = (ag − 1)(1 + ag + ag·2 + · · ·+ ag·(

γ
′
x
g −1))

hold.
γx

g and
γ
′
x

g are coprime, therefore

(1 + ag + ag·2 + · · ·+ ag·(
γx
g −1))

and

(1 + ag + ag·2 + · · ·+ ag·(
γ
′
x
g −1))

are also coprime [1: 32]. Hence γn | agcd(γx,γ
′
x) − 1. □

Definition 2.9. For simple description, the tree structure is introduced into divisors

of the index x and the modulus n.

Any different divisor of x is described as any different point. The relation between a

divisor γx and a divisor γ
′

x which is reduced from γx with being devided by any one prime
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factor more than or equal to 2, is denoted by the next symbol, an arrow:

γx ← γ
′

x .

γx is described as a high point of γ
′

x, and also γ
′

x is described as a low point of γx.

By this definition, the tree structure of which the top is x and the bottom is 1 is found

in divisors of x. The same structure is defined in divisors of n as well.

Theorem 2.10. When Theorem2.2 (1) is established and γx moves up from 1 to x

in the x divisors tree,

the maximum γn which satisfies

aγx ≡ 1 (mod γn) (1)

moves up from gcd(a− 1, n) to n in the n divisors tree.

Proof. Because of Lemma2.6, and it is more clear from Lemma2.7. Additionally, the

maximum γn which satisfies (1) is equal to gcd(aγx − 1, n). □

Corollary 2.11. For the conditions between γx and γn:

aγx ≡ 1 (mod γn) (1)

aγx ̸≡ 1 (mod γn), (2)

when γx moves up in the x divisors tree, (1) is maintained and (2) is changeable.

As well as it, when γx moves down in the x divisors tree, (2) is maintained and (1) is

changeable.

Proof. It is clear from Theorem2.10. □

Lemma 2.12. When a, b ≥ 0 are integers, n ≥ 2 is a natural number, and

a ≡ b (mod n) (1)

holds,

gcd(a, n) = gcd(b, n) (provided gcd(0, n) = n)

is established.

Proof. Because of (1), there exists an integer k which satisfies

a − b = kn
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⇔ a − kn = b

⇔ b + kn = a ,

therefore,

gcd(a, n)|b, gcd(b, n)|a.

a and b can be described as

a = l · gcd(b, n) (provided l ≥ 0)

b = m · gcd(a, n) (provided m ≥ 0),

therefore,

gcd(a, n) = gcd(l · gcd(b, n), n) = l
′
· gcd(b, n) (provided l

′
≥ 1)

gcd(b, n) = gcd(m · gcd(a, n), n) = m
′
· gcd(a, n) (provided m

′
≥ 1).

Hence,

gcd(a, n) = l
′
· gcd(b, n) = l

′
·m

′
· gcd(a, n).

Because of l
′
, m

′ ≥ 1 and the equality above,

l
′
= m

′
= 1

is established. □

Example 2.13. Not considering about efficiency, however, for a general natural

number n, one example method of primality test or prime factorization using the propo-

sitions above is showed here.

For a general natural number n, there exists x which satisfies

ax ≡ 1 (mod n),

as the most simlply way, by repeatedly multiplying the base a which is coprime with n. It

means that x is the order of the base a modulo n.

Next, x needs to be factorized. x is smaller than n, therefore, it can be factorized

easier than n, or changing a to another base which is coprime with n to find another x,

or repeating this method on x again.

Now, the difference between a prime and a composite can be confirmed only by using

Euclidean algorithm on aγx−1 and n, taking gcd(aγx−1, n), without one exception. The

reasons are the statements below.
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If γx which is the one step lower than x in the x divisors tree satisfies

aγx ≡ 1 (mod n),

γx < x should be the order of the base a modulo n. This is contradiction, therefore, γx
always satisfies

aγx ̸≡ 1 (mod n). (1)

When n is a prime, gcd(aγx − 1, n) takes 1 or n, however, because of (1), it can not

be n. Therefore gcd(aγx − 1, n) takes only 1.

In contrast, when n is a composite, because of Theorem2.2 (4), there exist c and

1 < γn < n which satisfy

ac ≡ 1 (mod γn).

In the case of c < x, because of Corollary2.11, this relation ascends the x divisors tree,

therefore if c is a divisor of γx which is the one step lower than x in the x divisors tree,

aγx ≡ 1 (mod γn)

is established. Therefore, gcd(aγx − 1, n) takes 1 < γn < n or an upper divisor of γn in

the n divisors tree.

Consequently, when n is a prime, the calculation result of gcd(aγx − 1, n) takes 1.

In contrast, when n is a composite and there exists c < x, the calculation result of

gcd(aγx − 1, n) takes 1 < γn < n or an upper divisor of γn. Therefore, it is enough to

test the all γx which are the one step lower than x in the x divisors tree.

However there exists the exception in the case of a composite number, namely for all

γn, c becomes equal to x. In this case, the calculation result becomes 1 as well as a prime.

One example method of primality test or prime factorization for this case is showed at

Example3.7 on the next section.

Incidentally, to calculate gcd(aγx − 1, n) is not so difficult, because a natural number

n > t > 0 which satisfies

aγx ≡ t (mod n)

can be calculated easier than aγx , therefore, also t− 1 which satisfies

aγx − 1 ≡ t− 1 (mod n).

Additionally, because of Lemma2.12

gcd(aγx − 1, n) = gcd(t− 1, n),

hence, it needs only to calculate gcd(t− 1, n).
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In this section, the usage of Theorem2.2 is not cleary referred to. But on the next

section, it will be clear that Theorem2.2 is the key point of the structure of a certain

type of natural numbers, such as Mersenne number 2p − 1.
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3. Elucidation of Mersenne number structure

Corollary 3.1. When a, n ≥ 2, x ≥ 1 are natural numbers and

ax ≡ 1 (mod n)

holds,

for any divisor γn ≥ 2 of n

aϕ(γn) ≡ 1 (mod γn) (1)

holds.

Consequently, there exists a divisor γx ≥ 1 of x, and

ϕ(γn) = kγx (provided k ≥ 1) (2)

is established.

Proof. Because of Lemma2.1, a and γn are coprime, therefore (1) is established by

Euler’s theorem. Because of Theorem2.2, (2) is established. □

Corollary3.1 is picked up here, because it seems interesting, however not being ana-

lyzed in this thesis in detail. This thesis goes an easier direction.

The next theorem confines a divisor γn to a prime factor p of the modulus n, and

finds the more simple relation with a divisor γx of the index x than in Theorem2.2.

Theorem 3.2. When a, n ≥ 2, x ≥ 1 are natural numbers and

ax ≡ 1 (mod n)

holds,

for any prime factor p ≥ 2 of n

ap−1 ≡ 1 (mod p) (1)

holds.

Consequently, there exists a divisor γx ≥ 1 of x, and

p = kγx + 1 (provided k ≥ 1) (2)

is established.

Proof. Because of Lemma2.1, a and p are coprime, therefore (1) is established by

Fermat’s little theorem.

Because of Theorem2.2,

p − 1 = kγx (provided k ≥ 1)
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is established.

Consequently, (2) is established. □

The next theorem confines the index x to repeated multiplication of a prime number

qi, and finds the general structure of Mersenne number 2p − 1.

Theorem 3.3. When a, n ≥ 2 are natural numbers, q ≥ 2 is a prime, i ≥ 1 is a

natural number, and

aq
i

≡ 1 (mod n)

holds,

if

n does not take any prime factor more than or equal to 2 in less than a, (1)

then

n ≡ 1 (mod q)

is established.

Proof. Because of Theorem3.2,

for any prime factor p ≥ 2 of n, there exists a divisor γx ≥ 1 of x, and

p = kγx + 1 (provided k ≥ 1) (2)

is established.

Because of Theorem2.3 and (1),

γx > 1

is established.

Therefore γx is either one of the numbers below:

γx = q1, q2, · · · , qi−1, qi . (3)

Because of (2) and (3),

n = k
′
q + 1 (provided k

′
≥ 1)

can be described, hence

n ≡ 1 (mod q)

is established. □
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Theorem 3.4. When p, q ≥ 2 are prime numbers, a ≥ 2 is a natural number, p and

a are coprime, and

p ̸≡ 1 (mod q) (1)

holds,

then for any k ≥ 1, there exists the minimum c ≥ 1 which satisfies

x = kc ⇒ aq
x−1 ≡ 1 (mod p)

and

x ̸= kc ⇒ aq
x−1 ̸≡ 1 (mod p).

Especially,

aq
c−1 ≡ 1 (mod p) (2)

is established.

Also in the case of q = p,

c = 1 (3)

is established.

Proof. The next contrapositive of Theorem3.3 is used in this proof.

When

a, n ≥ 2 are natural numbers, q ≥ 2 is a prime, and i ≥ 1 is a natural number, (4)

if

n ̸≡ 1 (mod q) (5)

holds, then

n takes a prime factor more than or equal to 2 in less than a (6)

is established, or for any i

aq
i

̸≡ 1 (mod n) (7)

is established.

At first, discussing the case of a natural number n ≥ 2, provided that n and a are

coprime and n satisfies (1) as well as p; after that, n is limited to a prime number p.

First, considering about an operation of taking the qth power residue of aq
i

,

(aq
i

)q= aq
i+1
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⇒ rq ≡ (aq
i

)q = aq
i+1

≡ r
′

(mod n)

, provided

aq
i

≡ r (mod n), n > r ≥ 0

aq
i+1

≡ r
′

(mod n), n > r
′
≥ 0,

because of these equalities, when i moves to i+1, an power residue r moves to an power

residue r
′
, which satisfy

rq ≡ r
′

(mod n).

Additionally, for any residue n > r
′′ ≥ 0 modulo n, the result of the operation of taking

the qth power residue of r
′′
is decided uniquely to some residue n > r

′′′ ≥ 0 modulo n.

In other words, for any n > r
′′ ≥ 0 modulo n, there exists n > r

′′′ ≥ 0 modulo n, which

satisfy

(r
′′
)q ≡ r

′′′
(mod n).

Moreover, residues modulo n are finit number, therefore, getting i increased, the residue

sequence necessarily takes again a residue which has already appeared in it. Hence the

cycle exists in the residue sequence.

In other words, there exits i
′ ≥ 1 and the minimum c ≥ 1 which satisfy

aq
i
′

≡ aq
i
′
+kc

(mod n) (provided for any k ≥ 1). (8)

Therefore,

⇔ aq
i
′

≡ aq
i
′
+kc

≡ aq
i
′
·qkc

≡ (aq
i
′

)q
kc

(mod n),

because of a and n are coprime, hence, aq
i
′

and n are coprime as well,

⇔ 1 ≡ (aq
i
′

)q
kc−1 (mod n)

⇔ 1 ≡ (aq
i
′

)q
kc−1 ≡ aq

i
′
·(qkc−1) ≡ a(q

kc−1)·qi
′

≡ (aq
kc−1)q

i
′

(mod n)

⇔ 1 ≡ (aq
kc−1)q

i
′

(mod n). (9)

Next, rc which satisfies

rc ≡ aq
kc−1 (mod n) (provided n > rc ≥ 0)

is considered about.

Because of (9), rc satisfies

1 ≡ (rc)
qi

′

(mod n). (10)
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Because of a and n being coprime,

rc ̸= 0 .

If n > rc ≥ 2, rc satisfies (4) and (5) of the contrapositive of Theorem3.3 as a of it.

However, because of (10), rc does not satisfy (7), therefore rc must satisfy (6).

Here, limiting n to a prime number p, because of p > rc, p does not take any prime

factor more than or equal to 2 in less than rc. Therefore (6) is not established. This is

contradiction.

Consequently,

rc = 1 .

Therefore,

aq
kc−1 ≡ 1 (mod p).

When x ̸= kc, if

aq
x−1 ≡ 1 (mod p)

holds, because of equivalence between (8) and (9), it contradicts the minimality of c.

When q = p, because of Fermat’s little theorem, c = 1 is established. □

Remark 3.5. The starting point of consideration of Theorem3.4 is the interesting

fact that the repeated operations of taking the qth power residue from a never take 1,

because of the contrapositive of Theorem3.3, even though a and n are coprime. In short,

the question of how the qth power residue sequence from a behaves like is the starting

point.

Because of Theorem3.4(2),

(2) ⇔ a ≡ aq
0

≡ aq
c

(mod p).

Therefore, in the case of Theorem3.4, the qth power residue sequence from a returns to

a again with making the cycle which has c times repetition and never takes 1. Also with

their equivalence, the minimum cycle is c. In addition, because of Theorem3.4 (3), when

q = p, the sequence is constant on a.

Also because of Theorem3.4 (3), this theorem includes the existence of Fermat’s little

theorem. Therefore, as well as Fermat’s little theorem is used in Theorem3.2, Theorem

3.4 might use for extending the usage of Theorem2.2. Additionally, it might use for

limiting or calculating an order of the base a modulo p by taking GCD between plural

qc − 1, especially p− 1.

To answer these possibility, several interesting questions are left in this theorem; for
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example, how c is determined, does there exist any numerical structure around c, how

about the case of

p ≡ 1 (mod q)

and so on, however, these questions are not analyzed in this thesis. This thesis goes

easier direction.

Corollary 3.6. For any divisor γ ≥ 2 of n which satisfies Theorem3.3,

γ ≡ 1 (mod q) (1)

is established.

Proof. From the proof of Theorem3.3, for any prime factor p of n is described as

p = kq + 1 (provided k ≥ 1).

Additionally any divisor γ is the product of p. □

Example 3.7. Continuing the discussion from Example2.13, namely in the case of

a composite number, and for all γn, c becomes equal to x. Its one example method of

primality test or prime factorization is showed here.

n can be described as

n = γn · γ
′

n (provided γn, γ
′

n > 1).

Because of Theorem3.3 and for all γn, c being equal to x; any prime factor p of n

satisfies

p = jx+ 1 (provided j ≥ 1),

therefore also n, γn, γ
′

n satisfies

n = kx+ 1 (provided k ≥ 1)

γn = lx+ 1 (provided l ≥ 1)

γ
′

n = mx+ 1 (provided m ≥ 1).

Hence

kx+1 = (lx+ 1)(mx+ 1)

⇔ k = lmx+ l +m (1)

is established.
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Consequently, when there exists (l,m) which satisfies (1), n is a composite number,

or when there does not exist (l,m) which satisfies (1), n is a prime number. Incidentally,

x is a privided number, and k can be calculated either n is a prime or a composite.

Theorem 3.8. When a, n ≥ 2, x ≥ 1 are natural numbers, q ≥ 2 is a prime,

x has a prime factor q, r ≥ 1 is the maximum index of q included in x, and

ax ≡ 1 (mod n)

holds,

if

gcd(a
x
qr − 1, n) = 1 , (1)

then

n ≡ 1 (mod q)

is established.

Proof. Because of (1), for any divisor γn ≥ 2 of n

a
x
qr ̸≡ 1 (mod γn)

holds, and because of Corollary2.11, for any divisor γ
′

x of x
qr ,

aγ
′
x ̸≡ 1 (mod γn)

is established.

Therefore, for all γn, divisors of
x
qr are the excluded domain, and any γx of the existence

domain is the outside of divisors of x
qr .

Since any divisor of x, which is not a divisor of x
qr , has a prime factor q, hence, any γx

of the existence domain has a prime factor q.

Therefore as well as the proof of Theorem3.3, because of Theorem3.2,

n ≡ 1 (mod q)

is established. □

Remark 3.9. The contrapositive of this theorem is interesting like the one of The-

orem3.4. For any x, ax moves around

ax ̸≡ 1 (mod n),
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even though a and n are coprime. However, it is not analyzed in this thesis. This thesis

goes an easier direction.

On the next section, the numerical structure of Mersenne number 2p − 1 and its

extension are considered concretely.
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4. Concrete consideration of the expanded Mersenne number

For considering the numerical structure of Mersenne number 2p− 1 and its extension

concretely, first, n of Theorem3.3 is examined in detail.

Remark 4.1. Generally in the case of power residue being one, in other words,

when

ax ≡ 1 (mod n)

is established, the consideration of this remark starts from n in this equality.

When n ≥ ax holds, ax ̸≡ 1 (mod n), therefore it is contradiction.

When n = ax − 1 holds, ax ≡ 1 (mod ax − 1).

When n < ax − 1 holds,

ax = kn+ 1 (at least k ≥ 1),

therefore

ax − 1 = kn

is established.

Because of the cases above, n is a divisor of ax − 1.

Consequently, to consider about n is equal to consider about divisors of ax − 1, and

n =
ax − 1

k
(provided k ≥ 1)

can be described.

From the statements above, it is clear that Theorem3.3 mentions about the special

character of the specific divisors of aq
i − 1.

On the other hand, in the case of i = 1, a = 2, this is a Mersenne number 2q − 1.

Therefore it is also clear that the result of Theorem3.3,

n ≡ 1 (mod q),

accords to the Fermat’s observation on divisors of a Mersenne number 2q − 1. In detail,

the Fermat’s observation is all divisors γ of a Mersenne number 2q − 1 satisfy

γ ≡ 1 (mod q).

In other words, Theorem3.3 and Corollary3.6 are an extension of the Fermat’s observa-

tion.

By the way,

ax − 1 = (a− 1)(1 + a+ a2 + · · · + ax−2 + ax−1) ,
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and (a − 1) is the product only from prime factors of more than or equal to 2 and less

than a. These observation above is the motivation of the next theorem.

Theorem 4.2. When a ≥ 2, i ≥ 1 are natural numbers, q ≥ 2 is a prime, and

p1, p2, · · · , pm−1, pm are all prime numbers more than or equal to 2 and less than a, and

rj ≥ 0 is the maximum index of pj included in
aq

i − 1

a− 1
(provided 1 ≤ j ≤ m), (1)

then

aq
i − 1

(a− 1)pr11 · p
r2
2 · · · · · p

rm−1

m−1 · p
rm
m
≡ 1 (mod q)

is established.

Proof.

aq
i

≡ 1 (mod aq
i

− 1)

is established.

For any divisor γ ≥ 2 of aq
i − 1,

aq
i

=
aq

i − 1

γ
· γ + 1 ,

therefore

aq
i

≡ 1 (mod γ) (2)

is established.

Because of (1) and

aq
i

− 1 = (a− 1)(1 + a+ a2 + · · · + aq
i−2 + aq

i−1),

aq
i − 1

(a− 1)pr11 · p
r2
2 · · · · · p

rm−1

m−1 · p
rm
m

(3)

is a divisor of aq
i − 1.

Therefore when (3) is more than or equal to 2, because of (2)

aq
i

≡ 1 (mod
aq

i − 1

(a− 1)pr11 · p
r2
2 · · · · · p

rm−1

m−1 · p
rm
m

)

is established.

In Theorem3.3, if (3) is put into n, because of (1) n does not have any prime factor more
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than or equal to 2 in less than a, hence

aq
i − 1

(a− 1)pr11 · p
r2
2 · · · · · p

rm−1

m−1 · p
rm
m
≡ 1 (mod q)

is established.

In the case of (3) being 1, it is obvious. □

Corollary 4.3. n which satisfies Theorem3.3 is a divisor of (3) in Theorem4.2.

Proof. Because of Remark4.1, n which satisfies

aq
i

≡ 1 (mod n)

is a divisor of aq
i − 1.

Additionally, n satisfies (1) in Theorem3.3, hence all prime factors of n are more than

or equal to a.

Consequently, n is a divisor of (3) in Theorem4.2. □

Corollary 4.4. Any prime factor p ≥ a of aq
i − 1 satisfies

p ≡ 1 (mod q).

Proof. p is also a prime factor of (3) in Theorem4.2.

Because of the proof of Theorem3.3, a prime factor p of (3) in Theorem4.2 satisfies

p ≡ 1 (mod q).

□

Remark 4.5. By expanding the usual proof on Fermat’s observation on Mersenne

prime [1: 31-33], it is easy to prove Corollary4.4 and directly Theorem4.2. However the

numerical structure described in this thesis would not be recognized from the usual proof.

Example 4.6. In the case of a = 4, q = 3, i = 2 of Theorem4.2,

aq
i

− 1 = 262143
aq

i − 1

a− 1
= 87381 .

Prime numbers more than or equal to 2 and less than a = 4 are p1 = 2, p2 = 3, therefore

r1 = 0, r2 = 2.
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Definitely,

aq
i − 1

(a− 1)pr11 pr22
= 9709 = 3 · 3236 + 1 ≡ 1 (mod q = 3).

However by looking into r2 = 0, because of 87381 = 3 · 29127, the residue is not always

1.

Example 4.7. In the previous example, 9709 = 7 · 1387 = 7 · 19 · 73.
Definitely,

7 = 3·2+1 ≡ 1, 1387 = 3·462+1 ≡ 1, 19 = 3·6+1 ≡ 1, 73 = 3·24+1 ≡ 1 (mod3).

The result fits to Corollary3.6.

Example 4.8. In the case of a = 6, q = 5, i = 1 of Theorem4.2,

aq
i

− 1 = 7775
aq

i − 1

a− 1
= 1555 .

Prime numbers more than or equal to 2 and less than a = 6 are p1 = 2, p2 = 3, p3 = 5,

therefore r1 = 0, r2 = 0, r3 = 1.

Definitely,

aq
i − 1

(a− 1)pr11 pr22
= 311 = 5 · 62 + 1 ≡ 1 (mod q = 5).

By the way, it is easy to evaluate that 311 is a prime number. 20 · 20 = 400, hence

looking into the numbers less than 20 is only needed. Additionally, the residue should be

1 modulo 5 and it should be an odd number. Therefore 11 is the only possible divisor, but

311 can not be devided by 11.

Corollary 4.9. When a = 3, i ≥ 1 is a natural number, q ≥ 2 is a prime, and

r ≥ 1 is the maximum index of 2 included in 3q
i − 1, then

3q
i − 1

2r
≡ 1 (mod q)

is established.

Proof. In the case of a = 3 of Theorem4.2, 2 is only the prime number in more than

or equal to 2 and less than a = 3. Additionally a− 1 = 2. □
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Example 4.10. In the case of q = 23, i = 1 of Corollary4.9,

aq
i

− 1 = 94143178826 r = 1 .

Definitely,

aq
i − 1

2
= 47071589413 = 23 · 2046590844 + 1 ≡ 1 (mod q = 23).

By the way, for all q ≤ 23 take r = 1, and there is no prime number which takes r ≥ 2.

The question about the existence of a prime number which takes r ≥ 2 is considered in

Remark4.14 a little bit more.

Example 4.11. Checking the case of q = 8, i = 1 of Corollary4.9 for the example

of q not being a prime number,

aq
i

− 1 = 6560 r = 5

and

aq
i − 1

2r
= 205 = 8 · 25 + 5 ̸≡ 1 (mod q = 8).

Therefore in the case of q not being a prime number, the residue is not always 1. From

this result, it is clear that Theorem4.2 is also not always established in the case of q not

being a prime number.

Corollary 4.12. When a = 2, i ≥ 1 is a natural number, and q ≥ 3 is a prime,

then

2q
i−1 ≡ 1 (mod q)

is established.

Proof. In the case of a = 2 of Theorem4.2, there is no number in more than or equal

to 2 and less than a = 2, and a− 1 = 1.

Therefore,

2q
i

− 1 ≡ 1 (mod q).

Since 2 and q are coprime,

2q
i−1 ≡ 1 (mod q)

is established. □

Proof. Corollary4.12 has an alternative proof not using Theorem4.2, but using Fermat’s

little theorem as below.
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When a and q are coprime, because of Fermat’s little theorem

aq−1 ≡ 1 (mod q).

Since

qi − 1 = (q − 1)(1 + q + q2 + · · ·+ qi−2 + qi−1),

aq
i−1 = a(q−1)(1+q+q2+···+qi−2+qi−1)

= (a(q−1))(1+q+q2+···+qi−2+qi−1)

≡ (1)(1+q+q2+···+qi−2+qi−1) (mod q)

≡ 1 (mod q).

Take a = 2, q ≥ 3 in the equality above. □

Remark 4.13. Because of the previous proof, Corollary4.12 and Fermat’s little

theorem of the case of its base 2 are equivalence. Therefore, it is clear that Theorem4.2

is the extension of Fermat’s little theorem of the case of its base 2.

Remark 4.14. At the last, in the general case but except a = 2, comparing Theorem

4.2 with Fermat’s little theorem, it is clear that if there exists rj ̸= 0, the either proposition

can not prove the other one in general. It is also the difference that Theorem4.2 can be

established in the condition of a and q not being coprime.

The conditions; for all rj = 0, a and q being coprime, and a− 1 and q being coprime,

are needed for the both propositions becoming equivalence. Namely

aq
i − 1

a− 1
≡ 1 (mod q)

⇔ aq
i

− 1 ≡ a− 1 (mod q)

⇔ aq
i

≡ a (mod q)

⇔ aq
i−1 ≡ 1 (mod q)

⇔ aq−1 ≡ 1 (mod q) (1)

By the way, from the statements above, the case of q > 3, r = 1 of Corollary4.9 is

equivalent to Fermat’s little theorem of the case of its base 3.

In contrast, when q > 3, r ≥ 2,

3q
i − 1

2 · 2r−1
≡ 1 (mod q)
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⇒ 3q
i − 1

2
≡ 2r−1 (mod q)

, and the left side of the equality is 1, because of Fermat’s little theorem and (1) of the

direction from the bottom to the top.

Therefore,

⇒ 2r−1 ≡ 1 (mod q). (2)

Consequently, the existence of r which satisfies (2) is the necessary condition for the case

of r ≥ 2 of Corollary4.9 to be established. There exists at least one instance such as

r = q, but it seems a little bit strict condition, because 3q
i − 1 should be divided by 2q−1

or something 2r−1 at least more than q.

Example 4.15. In the case of a = 11, q = 3, i = 1 of Theorem4.2,

aq
i

− 1 = 1330
aq

i − 1

a− 1
= 133 .

Prime numbers more than or equal to 2 and less than a = 11 are p1 = 2, p2 = 3, p3 =

5, p4 = 7, therefore r1 = 0, r2 = 0, r3 = 0, r4 = 1.

Definitely,

aq
i − 1

(a− 1)pr11 pr22 pr33 pr44
=

113 − 1

10 · 7
= 19 ≡ 1 (mod q = 3). (1)

On the other hand, because of Fermat’s little theorem,

113−1 ≡ 121 ≡ 1 (mod q = 3)

⇔ 113 − 1

10
≡ 19 · 7 ≡ 1 (mod q = 3) (2)

However, in general, (2) can not prove (1), and (1) can not prove (2) as well.

Example 4.16. In the case of a = 9, q = 3, i = 1 of Theorem4.2,

aq
i

− 1 = 728
aq

i − 1

a− 1
= 91 .

Prime numbers more than or equal to 2 and less than a = 9 are p1 = 2, p2 = 3, p3 =

5, p4 = 7, therefore r1 = 0, r2 = 0, r3 = 0, r4 = 1.

Even if a and q are not coprime,

aq
i − 1

(a− 1)pr11 pr22 pr33 pr44
=

93 − 1

8 · 7
= 13 ≡ 1 (mod q = 3).
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Definitely, Theorem4.2 is established.
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